Lab 4

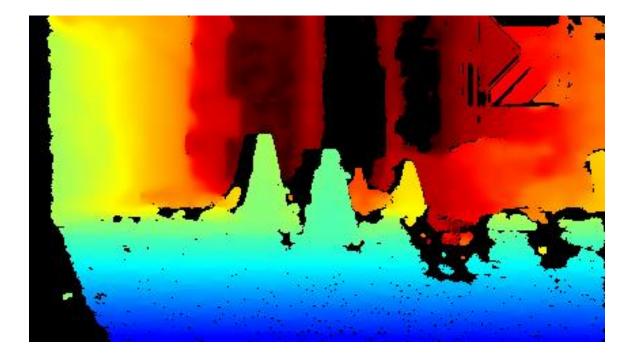
LIDAR

This lecture is part of the RACECAR-MN introductory robotics course. You can visit the course webpage at <u>mitll-racecar-mn.readthedocs.io</u>.

Objectives

Main Objective: Use LIDAR to detect objects around the car in all directions

Learning Objectives

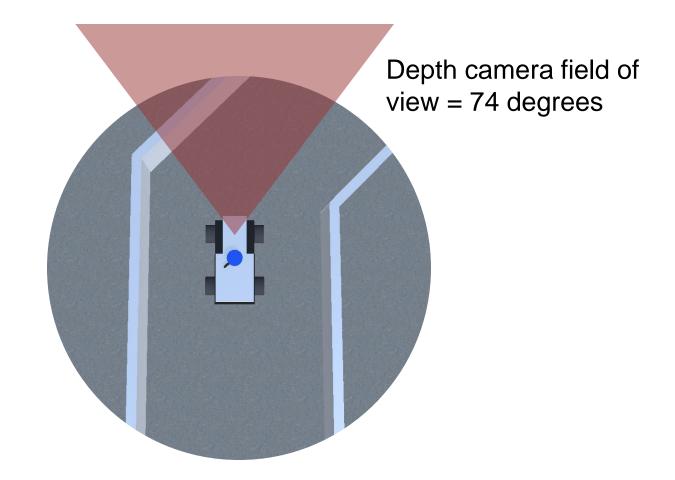

- Compare the advantages of the depth camera and the LIDAR, and identify ideal situations for each sensor
- Convert raw LIDAR data into meaningful information about the surrounding environment
- Understand and implement rudimentary path planning

• What are some limitations of depth cameras?

Depth Camera

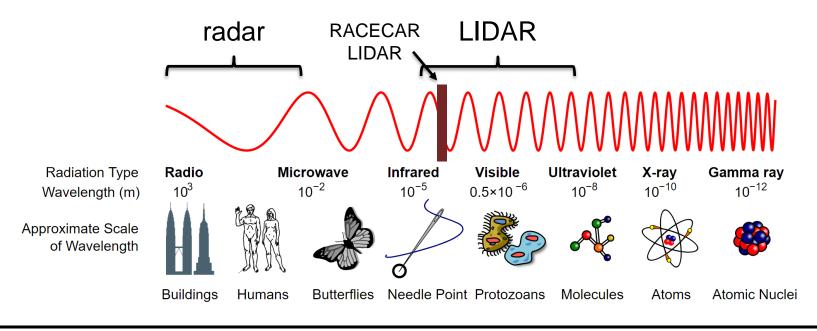
- What are some limitations of depth cameras?
 - Can only see in front of the car
 - Do not work in the dark/poor lighting
 - Noise and missing data

Depth Camera

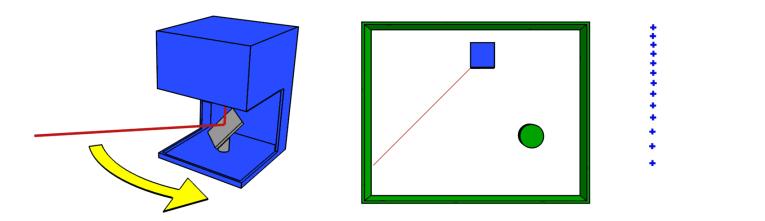


- What are some limitations of depth cameras?
 - Can only see in front of the car
 - Do not work in the dark/poor lighting
 - Noise and missing data
- On the other hand, LIDAR:
 - Provides 360-degree vision
 - Works in all lighting environments
 - Can provide a second source of truth

Depth Camera



LIDAR

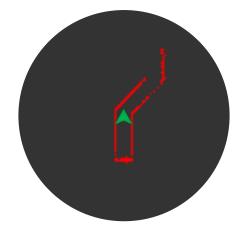


- LIDAR (light + radar): Calculate object distance by firing a laser and measuring the time it takes to return
 - Like radar but with a smaller wavelength of light

LIDAR

Animation created by Mike1024

LIDAR Limitations


- Accuracy varies based on material
- Subject to noise and null values
- Poor performance in snow

RACECAR-MN LIDAR

- YDLIDAR X4 (2D)
 - \$100 (cheap for LIDAR)
 - Max range: 10 m
 - Between 6 to 12 hz
- 720 samples returned as an array of floats
 - 0th entry = directly in front of the car

Ordered clockwise

Lidar Module

- Retrieves the LIDAR scan
- Public interface
 - get_samples()
 - get_num_samples()

Display Module

- Displays data and images to the screen
 - Simulation: Creates a window on your computer
 - RACECAR: Creates a window on the mini-monitor
- Public interface
 - show_color_image()
 - show_depth_image()
 - show_lidar()

Examples


```
# Example 1
scan = rc.lidar.get_samples()
foo = scan[450]
# Example 2
scan = rc.lidar.get_samples()
scan = (scan - 0.01) % 100000
bar = np.argmin(scan) * 360 / rc.lidar.get_num_samples()
# Example 3
```

```
scan = rc.lidar.get_samples()
baz = [e for e in scan[170:191] if e > 0.0]
qux = sum(baz) / len(baz)
```


Examples


```
# Example 1
scan = rc.lidar.get_samples()
foo = scan[450]
# Example 2
scan = rc.lidar.get samples()
scan = (scan - 0.01) \% 100000
bar = np.argmin(scan) * 360 / rc.lidar.get num samples()
# Example 3
scan = rc.lidar.get_samples()
baz = [e for e in scan[170:191] if e > 0.0]
qux = sum(baz) / len(baz)
                               when would this cause an error?
```


Lab 5 Objectives

- Jupyter Notebook: Write helper functions to measure average distance and find the closest point in a scan
- Lab 5A: Safety stop (revisited)
- Lab 5B: Wall following
- Revisit Phase 1 challenge

